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Based on the generalized Fourier method used simultaneously in the spherical and cylindrical systems of co-
ordinates, we suggested an analytical method for solving the contact problem of thermoelasticity for an elastic
half-space with a rigid spherical inclusion. The problem is reduced to an infinite system of linear algebraic
equations with the Fredholm operator provided that the boundary surfaces do not intersect. An approximate
solution of the system in the form of a series with respect to a small parameter is obtained. The numerical
analysis of the problem is presented.

For the first time, the technique of the generalized Fourier method (GFM) for solving thermoelasticity prob-
lems in the case of multiply connected bodies was used in the solution of problems of thermoelasticity for a half-space
with a spherical cavity (the axisymmetric formulation) in [1]. Then this technique was developed in [2] in solution of
the thermoelasticity problem for a sphere with a spherical cavity. In the present work, the GFM has been developed
for the general nonaxisymmetric case.

We consider the static thermoelastic contact problem of nonaxisymmetric frictionless indentation, of an in-plan
round die of radius a into an elastic half-space with the heated absolutely rigid motionless spherical inclusion the cen-
ter of which coincides with the axis of the die and is at a distance h from the boundary of the half-space. The tem-
perature distribution in the half-space is assumed to be stationary, at infinity and on a plane surface the temperature is
T = 0, and the surface of the inclusion has a constant temperature T = T0.

We introduce the cylindrical (ρ, z, ϕ) and spherical (r, θ, ϕ) systems of coordinates with a common axis of
symmetry, which coincide with the centers of the die basis and the inclusion. It is assumed that the projection of the
point of application of force P, which affects the die, onto the boundary of the half-space has the coordinates (ρ0, 0,
0). The temperature distribution and the stressed-deformed state (SDS) are determined from the solution of the non-
bound stationary problem of thermoelasticity

∇ 2
T = 0 ,   T (ρ, 0, ϕ) = 0 ,   T (R, θ, ϕ) = T0 ; (1)

∇ 2
U + (1 − 2σ)−1

 ∇  (∇ U) = 
2 + 2σ
1 − 2σ

 αT∇ T ; (2)

τρz (ρ, 0, ϕ) = τϕz (ρ, 0, ϕ) = 0 ,

Uz (ρ, 0, ϕ) = δ + γρ cos ϕ ,   ρ < a ,   σz (ρ, 0, ϕ) = 0 ,   ρ > a ; (3)

U (R, θ, ϕ) = 0 . (4)

In view of the axial symmetry of the heat-conduction problem (1), we look for its solution in the region Ω
= 



z > 0, r > R



 in the form of the superposition of the outer basis solutions of the Laplace equation for a sphere and

the inner solutions for a half-space:
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T = ∫ 
0

∞

B (λ) uλ,0
−(2)

 dλ +  ∑ 

n=0

∞

 bn 
R

n+1

n!
 un,0

+(4)
 , (5)

where

uλ,m
%(2)

 = exp (% λz + imϕ) Jm (λρ) ;

un,m
%(4)

 = 













(n − m) !

r
n+1

r
n

(n + m) !













 Pn
m

 (cos θ) exp (imϕ) .

Use of the GFM (see [3]) reduces the stationary heat-conduction problem to a system of equations relative to
B(λ), bn:

B (λ) + exp (− λh)  ∑ 

n=0

∞

 bn 
(− 1)n

n!
 R

n+1
 λn

 = 0 ,

bk +  ∑ 

n=0

∞

 bn (− 1)n+k+1
 
(n + k) !

n!k!
 


R
2h





n+k+1

 = T0δk0 ,   k = 0, 1, 2, ... .

Then we consider the boundary-value problem (2)–(4) in the region Ω. It is known that a general solution of
the inhomogeneous Lame′  equation (2) can be presented in the form of the sum of the general solution of the homo-
geneous equation (U0) and the partial solution of the inhomogeneous Lame′  equation (U1). We look for U1 in the form
U1 = ∇Φ . In this case, it is not difficult to show that the thermoelastic potential Φ satisfies the Poisson equation 

∇ 2Φ = 
1 + σ
1 − σ

 αTT .

An explicit form of the function T (5) allows one to recover the potential Φ; then the partial solution has the
form

U1 = − σα 










∫ 
0

∞

B (λ) ∇  




λz + 1

λ2  uλ,0
−(2)



 dλ +  ∑ 

n=0

∞

 bn
R

n+1

2n − 1
 ∇   r

2
 un,0

+(4)











 ,

σα = 
1 + σ

2 (1 − σ)
 αT .

For presentation of U1 in cylindrical and spherical coordinates we use the following lemmas.
Lemma 1. When n ≥ 1, z1 ≠ 0, the integral presentation holds:

r1
2
 un,0

+(4)
 = 

(% 1)n

n!
 ∫ 

0

∞

uλ,0
&(2)

 % (2n − 1) λz1 − (n − 1)2
  λ

n−2
 dλ .

Lemma 2. When λ ≠ 0, the expansion holds:

λz + 1

λ2  uλ,0
−(2)

 = exp (− λh)  ∑ 

k=0

∞

 (− 1)k
 λk

 




h

λ
 − 

k
2
 − 1

(2k − 1) λ2 − 
r
2

2k + 3




 uk,0

−(4)
 .
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The results of the lemmas make it possible to write U1 in the cylindrical and spherical systems of coordi-
nates:

U1 = − σα ∫ 

0

∞



B (λ) exp (− λz) 




− 

λz + 1
λ

 J1 (λρ) eρ − zJ0 (λρ) ez



 −

− exp (% λz)  ∑ 

n=0

∞

 bn 
R

n+1

2n − 1
 
(% 1)n
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


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

 



 dλ ,   (z ≠ 0) ,
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

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 ,

βk = ∫ 
0

∞

B (λ) exp (− λh) λk
 dλ .

We pass over to the construction of the general solution of the homogeneous equation (2). We look for U0
in the form of the superposition of the outer (for a sphere) and inner (for a half-space) basis solutions of the Lame′
equation:

U0 =  ∑ 

m=−1

1

  ∑ 

s=1

3

 






∫ 

0

∞

Am,s (λ) Us,λ,m
−(2)

 dλ +   ∑ 

n= m

∞

  an,m
(s)

 Us,n,m
+(4)







 ,

Us,n,m
%(2)

 = ωs Ds uλ,m
%(2)

 ,   s = 1, 2, 3 ,   λ 2 R ,   m 2 Z ;

ω1 = ω3 = λ−1
 ,   ω2 = 1 ;   D1 = ∇  ,   D2 = z∇  − χez ,   D3 = i [∇  × ez] ;

U1,n,m
+(4)

 = ∇ un,m
+(4)

 ,   U2,n,m
+(4)

 = [− (χ (2n + 1) + 1) rez + (n − χ − 1) r2∇ ] un,m
+(4)

 ,

U3,n,m
+(4)

 = i [∇  × run,m
+(4)

 er] ,   Uk,n,m
−(4)

 = Uk,−n−1,m
+(4)

 ,   χ = 3 − 4σ .

The following theorems are proved.
Theorem 1. When n ≥  m , z ≠ 0, the presentations of the outer spherical solutions of the Lame′  equation in

terms of the cylindrical solutions hold:

Us,n,m
+(4)

 = 
(− 1)m

 (% 1)n+m

(n − m) !
  ∑ 

j=0

3

 ∫ 

0

∞

Ws,n,m
%(42)j,λ

 Uj,λ,m
&(2)

 dλ ,
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where

W1,n,m
%(42)j,λ

 = λn+1
 δj1 ;

W2,n,m
%(42)j,λ

 = λn−1
 



− [(1 − χ) (n2

 − n + m
2) + n ((n − 1)2

 − m
2)] δj1 % n (2n − 1) δj2 + (1 + χ) m (2n − 1) δj3




 ;

W3,n,m
%(42)j,λ

 = % λn
 (− mδj1 + nδj3) .

Theorem 2. The expansions of the solutions of the Lame′  equation for a half-space with respect to the spheri-
cal basis solutions hold:

Us,λ,m
−(2)

 = exp (− λh)  ∑ 

j=1

3

   ∑ 

k= m

∞

  (− 1)k
 

λk−1

(k + m) !
 Ws,λ,m

−(24)j,λ
 Uj,k,m

−(4)
 ,

where

W1,λ,m
−(24)j,k

 = δj1 ;

W2,λ,m
−(24)j,k

 = 



λh − 

(k − χ − 1) (k2
 − m

2)
(2k − 1) k




 δj1 − 

λ2δ2j
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 − 

n (χ + 1)
k (k + 1)

 λδj3 ;
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−(24)j,k

 = − 




m
k

 δj1 + 
λ

k + 1
 δj2




 .

The formulas given above make it possible to transform the displacement vector U separately to the spherical
and cylindrical coordinates:

U =  ∑ 
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1
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Satisfaction of conditions (2)–(4) leads to an infinite system of linear algebraic equations relative to unknown
coefficients an,m

(s) :

  ∑ 

s=1

2

 









ak,m

(s)
qk,p

(s)
 + rk,p

(s)
 






νk,p

(s)
 +  ∑ 

j=1

3

  ∑ 

n=µ

∞

 τk,n,m
s,j

 an,m
(j)

















 = δm0σαdk,p ,

ak,m
(3)

 +  ∑ 

j=1

3

  ∑ 

n= m

∞

 τk,n,m
(3,j)

 an,m
(j)

 = νk,m
(3)

 ,   k ≥  m  ,   p = 1, 2 .

(6)

The matrix coefficients of the system can be found rather easily, but their explicit form allows one to show
that under the conditions of R < h the operator of system (6) is the Fredholm operator, which makes it possible to
solve the system numerically by the reduction method.

Using the above-described method we can find the elastic stressed-deformed state with an arbitrary axisym-
metric temperature field.

The force P and the momentum which are applied to the die are related to the displacement δ and the angle
of rotation of the die γ (3) by the following formulas:

P

2G
 = δaR1 + αTa

2
R2 ,   

ρ0P

2G
 = γa

3
R3 .

Table 1 gives the values of the parameters R1, R2, and R3 obtained at a/R = 0.5.
The stresses in the region under consideration can be presented in the form of the superposition of the

stresses due to axisymmetric indentation of the die into the half-space σ0, rotation of the die σ1, and the temperature
expansion σT. For example, under the die we have

a
2

P
 σz (ρ, ϕ) = σz

0
 + 

ρ0

a
 σz

1
 cos ϕ + 

2Ga
2

P
 αTT0σz

T
 .

The character of the stressed-deformed state under the die can be judged by the graphs (the stresses were
found at a/R = 0.5) given in Fig. 1.

A numerical analysis of the problem shows the presence of zones of tensile thermoelastic stresses in the re-
gion of contact between the die and the half-space and on the core when they all are rather close to each other
(R ⁄ h ≥ 0.3). The latter is a consequence of the fact that, under the effect of the linear temperature expansion caused
by heating of the regions between the core and the boundary of the half-space, the boundary of the half-space moves
aside from the core. In this case, the value of the total stress σz(ρ, 0, ϕ) on the die axis decreases in magnitude. This
can occur only because of the fact that the temperature stresses σT near the die axis are positive.

It is of interest that the radius of the zone of tensile stresses decreases with an increase in the ratio a/R. The
highest concentration of stresses in the vicinity of the die axis is observed at a small relative size of the core.

Independently, we obtained an approximate solution of the system in the form of a series with respect to the
small parameter ε = R/h. We give some results:

TABLE 1. Values of the Coefficients R1, R2, and R3 at Different R/h

R ⁄ h 0.1 0.3 0.5 0.7 0.8

R1 2.902 3.252 4.169 6.697 9.668

R2 12.70 9.385 7.031 5.800 5.539

R3 1.905 1.907 1.948 2.287 2.837
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R1 = 
2

1 − σ
 



1 + 

12ε

(10 − 12σ) π
 



(2 − 2σ) arctan η + 

η

1 + η2




2



 + O (ε2) ,

R2 = 4 ⋅ 1 + σ
1 − σ

 η−2
 ε arctan η + O (ε2) ,

R3 = 
4

3 (1 − σ)
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






1 + 

18εη

(10 − 12σ) π
 



(2 − 2σ) η − arctan η
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η

1 + η2


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


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 + O (ε2) ,

σz
0
 (0) = − (π (1 − σ) R1)−1

 



1 + 

12ε

(10 − 12σ) η
 



(2 − 2σ) arctan η + 

η

1 + η2



 ×

× 



(2 − 2σ) (η arctan η + 1) + 2η arctan η + 

η

1 + η2







 + O (ε2) ,

σz
T
 (0) = 

2 (1 + σ)
π (1 − σ)

 η−2
 ε [(η2

 − 1) arctan η + η] + O (ε2) ,   η = a ⁄ h .

We note that the stresses found by these formulas are in agreement with the numerical results at ε = 0.1 ob-
tained earlier.

NOTATION

h, distance from the boundary of the half-space to the center of the spherical inclusion; R, radius of the in-
clusion; ε = R/h; (r, θ, ϕ) and (ρ, z, ϕ), spherical and cylindrical systems of coordinates related to the inclusion and the
half-space, respectively; (r1, θ1, ϕ), (ρ1, z1, ϕ), co-directional systems of coordinates with a common origin; a, radius of
the in-plan round die; η = a/h; P, force applied to the die at the point (ρ0, 0, 0); σ, Poisson coefficient; αT, coeffi-
cient of linear temperature expansion; G, shear modulus; T, temperature field; T0, temperature of the inclusion; σz,
τρz, τϕz, components of the stress tensor; Uz, component of the displacement vector; δ and γ, die displacement along

Fig. 1. Stresses σz
0/P (a), σz

1/P (b), and σz
T/(αTT0G) (c) under the die: 1) R/h =

0.1; 2) 0.3; 3) 0.5; 4) 0.7; 5) 0.8.
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the axis 0z and the angle of rotation of the die about the axis 0y; Ω = 


z > 0, r > R



, region of the stressed-deformed

state under investigation; B(λ) and bn, unknown weighting function and the coefficients in the heat-conduction prob-
lem; uλ,m

%(2) and un,m
%(4), outer (+) and inner (−) basis harmonic functions for the half-space and the sphere, respectively;

Pn
m(x), joint Legendre function of first kind; Jm, Bessel function of first kind; n, m, integral indices which are discrete

spectral parameters of the solution of the Laplace equation, µ =  m ; λ, continuous spectral parameter (λ 2 R) of the
solution of the Laplace equation for the half-space; k, nonnegative integral index; δkn, Kronecker symbol; (eρ, ez) and
(eθ, er), unit vectors of the cylindrical and spherical systems of coordinates; U, vector of thermoelastic displacements;
U1, partial solution of the inhomogeneous Lame′  equation; U0, general solution of the homogeneous Lame′  equation;
Φ, thermoelastic potential; Us,n,m

%(42)j,λ and Us,λ,m
%(2) , basis solutions of the homogeneous Lame′  equation for the sphere and

the half-space, respectively; s, number of linearly independent basis solutions of the homogeneous Lame′  equation; i,
imaginary unit; Am,s(λ) and an,m

(s) , unknown weighting functions and coefficients in the basis solutions of the Lame′
equation; Rs, parameters in the formulas relating force P and distance ρ0 to displacements δ and γ; O(ε2), infinitesimal
quantity of the order of smallness higher than ε2; Ws,n,m

%(42)j,λ and Ws,λ,m
−(24)j,λ, coefficients of the vector summation theo-

rems relating the basis solutions of the Lame′  equations for the sphere and the half-space.
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